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Abstract

In this note, we summarize some of the current results on the Ehrhart polynomial of the
Birkhoff polytope and poset polytopes, then investigate possible approaches to attack some main
problems regarding these two polytope families. We also introduce the Birkhoff-von Neumann
decomposition and provide code in SageMath that generates the snake posets.

1 Introduction

Polytopes are geometric objects living in Euclidean space of any dimensions, often described
as the convex hull of a set of points or the intersection of half-spaces, and it’s worth noting that
it’s not easy to prove the equivalence of two definitions and each applies to different problems. We
call a convex polytope P in Rd with vertices in Zd a lattice polytope. Polytopes have been widely
studied in discrete geometry and algebraic combinatorics, they arise on multiple occasions, due to
various reasons and link different parts of mathematics, the two types of polytopes we are going to
introduce appear frequently in other fields.

The Birkhoff polytope is usually known under the name magic square or semi-magic square,

which dates back thousands of years ago. We denote Bn = {A|A ∈ Rn×n, aij ≥ 0,
n∑

i=0
aij =

n,
n∑

j=0
aij = n}, all non-negative matrices whose rows and columns sum up to n. When viewed as

a subset of Rn2 , it’s shown that Bn is a (n− 1)2-dimensional polytope with all n× n permutation
matrices as its vertices, namely the convex hull of Sn (all permutation matrices). This leads us to
the natural question of how to efficiently decompose A ∈ Bn as a linear combination of permutation
matrices and analyze its run-time, and how hard this problem is, which will be addressed later in
the note.

The poset polytopes we discuss in this note are introduced by Stanley in [7]. Given a poset (P,≺)
with cardinality n, we define O(P ) = {f : P → R|xi ≺ xj =⇒ f(xi) ≤ f(xj), 0 ≤ f(xi) ≤ 1},
which can be naturally identified as a subset of Rn in the following way: P = {α1, · · · , αn}, O(P ) =
{(y1, · · · , yn) : 0 ≤ yj ≤ 1, yi ≤ yj if αi ≺ αj}. It’s a convex polytope because it’s clearly bounded
and defined by a finite number of linear inequalities, this is called the order polytope. Given one
linear extension of P , P = {x1, · · · , xn}, O(P ) contains the simplex {p = (pi) ∈ Rn|p1 ≤ · · · ≤ pn},
thus we know that dim(O(P )) = n, which is an important distinction from Bn.
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The order polytope has a close relative, the chain polytope. It’s all functions g : P → R whose
values are non-negative and g(y1) + · · · + g(yn) ≤ 1, for every chain y1 ≺ · · · yn. This is also an
n-dimensional convex polytope denoted C(P ).

There are many more polytopes arising from posets, another example is the valuation polytope,
but we won’t discuss this one in detail. Assume that L is a finite distributive lattice, a mapping
v : L → R is called a valuation if v(a∧ b) + v(a∨ b) = v(a) + v(b),∀a, b ∈ L. All valuations identify
naturally to a point in Rn and we denote V (L) to be all valuations with range [0, 1], there are
different definitions that are equivalent to this up to translation.

We’ll study these polytopes under the framework of Ehrhart theory, which links lattice points
enumeration with polynomials, see [3] for background information. Along the way, we present
different techniques used to derive the Ehrhart polynomial and pay extra attention to the study of
roots.

2 Background

2.1 Norm bound of roots of Ehrhart polynomials

For a convex lattice polytope P in Rd, we denote its Ehrhart polynomial LP (t), we introduce
some results on the roots of LP (t), denoted as a set RP and RP is bounded by c means all roots
are bounded by c in usual Euclidean norm.

In [2], the authors found that RP is bounded by 1+ (d+1)!, and later in [4] B. Braun improved
the bound tremendously to θ(d2) using a rather simple argument by changing the basis of LP (t)
and using known facts on the h∗-vector of P .

Theorem 1 (Theorem 1 in [4]). If f is a non-zero polynomial of degree d with real-valued, non-
negative coefficients when expressed with respect to the basis of polynomials of degree d

Vd(t) =

{(
t+ d− j

d

)
|0 ≤ j ≤ d

}
then all roots of f lie inside the disc with center −1

2 and radius d(d− 1
2).

If we take f to be LP (t), one can verify that it satisfies the assumption, since the coefficients
of LP (t) under {Vd} form the so-called the h∗-vector of P , which is proven to be a non-negative
integer-valued vector.

We sketch the proof steps below:

1. view f(z) as a linear combination of points Vd(z) in C, define Dd = {z : |z + 1
2 | ≤ d(d− 1

2)},
take any z /∈ Dd.

2. M = {(z + d), · · · , (z − d+ 1)}, and show that the angular width of M is less than π
d .

3. show all Vd(z) live in an open half-plane since they’re all products of 1
d! and d elements in M ,

and since the coefficients are non-negative, the combination f(z) is not zero, thus roots all
live in Dd.

Remark 1. this proof only requires the coefficients to be non-negative, i.e. only depends on f
having a "nice" representation with respect to Vd, if the coefficients satisfy extra properties such as
unimodality we may improve the bound. The proof shows how a geometric view like viewing f(z)
as a linear combination of points can lead to a concise and intuitive proof.
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2.2 Birkhoff Polytopes

We denote LBn(t) = Hn(t), and present a reciprocity/symmetry of Hn(t).

Proposition 1 (Theorem 6.3 in [3]).

(−1)(n−1)2Hn(t) = LB◦
n
(−t) = Hn(−t− n)

and
Hn(−1) = · · · = Hn(−n+ 1) = 0

This result gives us a way to actually compute Hn(t) by interpolation. We need to compute
(n− 1)2 + 1 to interpolate, and n of them is known, by Ehrhart–Macdonald reciprocity we need to
compute ((n − 1)2 + 1 − n)/2 =

(
n−1
2

)
values, which is clearly too expensive. But it’s fun that we

can do H3 by hand knowing that H3(1) = 6, H3(0) = H3(−3) = 1, H3(−1) = H3(−2) = 0.
There are other ways to describe Bn, for example:

Observation 1. Permutation matrices are in bijection with matchings on the complete bipartite
graph Kn,n.

But a more concise way is the following:

Bn = {x ∈ Rn2

≥0 : Ax = b}

in which

A =



1 · · · 1
1 · · · 1

. . .
1 · · · 1

1 1 1
. . . . . . · · · . . .

1 1 1


∈ Z2n×n2

and

b =


1
1
...
1

 ∈ Z2n

Remark 2. A is the incidence matrix of Kn,n.

2.3 Poset polytopes

We’ve defined O(P ) and derived that dim(O(P )) = n, next we follow [7] discussing its vertices,
faces, volumes, etc.

a facet of a polytope is one of the maximal faces besides the entire polytope. We first characterize
facets and vertices of O(P ), and refer the reader to [7] for a full description of faces.

f ∈ O(P ) is in a facet iff it satisfies exactly one of the following conditions:
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1. f(x) = 0, x is a minimal element.

2. f(x) = 1, x is a maximal element.

3. f(x) = f(y), y covers x.

thus the number of facets is a+ b+C(P ) in which a, b, C(P ) are the number of minimal elements,
maximal elements, and covering relations, respectively.

Define a subset I ⊂ P to be a filter if: ∀x ∈ I, ∀y ≥ x, we have y ∈ I, namely upward-closed.

Proposition 2. V (O(P )) consists of characteristic functions of filters I. In particular, the number
of vertices is the number of filters.

There’s a similar characterization of the vertices of C(P ), they are the characteristic functions
of all anti-chains, and there’s a well-known bijection between filters I and anti-chains J :

I = {y : x ≺ y,∃x ∈ J}
J = minimal elements of I

So O(P ) and C(P ) have the same number of vertices. In fact, there’s a nice bijection between
them and they have the same Ehrhart polynomial. There’s a beautiful relation between LO(P )(t),
LC(P )(t), and the order polynomial Ω(P, t), the number of order-preserving maps: P → [t].

Theorem 2. LO(P )(t) = LC(P )(t) = Ω(P, t+ 1)

Proof. By definition, LO(P )(t) is the number of order preserving map: P → [0, 1] such that tf(x) ∈
Z,∀x ∈ P , which equals to the number of order preserving map: P → {0, 1, · · · , t}, which trivial
equals to number of order preserving map: P → {1, · · · , t+ 1}. Thus LO(P )(t) = Ω(P, t+ 1).

Compare the leading coefficients of the two and we get a relation between the geometry of O(P )
and the combinatoric nature of P .

Proposition 3. Volume of O(p) equals to e(P )
n! , where e(P ) is the number of linear extensions.

Stanley observed that C(P ) is the vertex packing poltope of the comparability graph of P ,
combined with the above theorem.

Observation 2. The order polynomial of a finite poset P depends only on the comparability graph.

Because the comparability graph remains unchanged if we take the dual of a poset, we note one
simple consequence.

Proposition 4. The dual of P gives the same Ehrhart polynomial as that of P .

Stanley also gives a canonical triangulation of O(P ) in [7] using order ideal which is just
downward-closed version of the filter.

Let J(P ) denote the lattice of order ideals ordered by inclusion, for any chain K : I1 ⊂ · · · ⊂ Ik,
we can build a subset of O(P ) by restricting f to be constant on I1, I2 − I1, · · · , P − Ik, and of
course order-preserving. In particular, the facets are in bijection with all linear extensions:

0 = f(y1) ≤ · · · ≤ f(yn) = 1

4



Remark 3 (Bn, O(P ), and C(P ) are closely related!). Both O(P ) and Bn are 0−1 compressed
polytopes.

An 0 − 1 polytope simply means that vertices are in {(i1, · · · , in) : ij ∈ {0, 1}}. By the main
theorem in [1], we know that the h∗-vector of an 0 − 1 compressed polytope shows unimodality.
Moreover, both O(P ) and Bn have symmetric root distribution, and we should expect more similarity
such as a reciprocity for O(P ).

But in terms of root distribution, O(P ) tends to have more real roots and Bn has mostly roots
with a non-zero imaginary part.

3 Several formulas of Hn(t)

Now we switch our attention to Hn(t) and focus on methodology instead of concrete results.

3.1 Euler’s generating function and Constant term identities

For any polytope given by
P = {x ∈ Rd2

≥0 : Ax = b}

Denote all columns of A by c1, · · · , cd, consider the constant term of the Euler’s generating function:

1

(1− zc1) · · · (1− zcd)ztb

by expanding it in terms of geometric series:

(
∑

zn1c1) · · · (
∑

zndcd)z−tb

for the constant term, we have:

n1c1 + · · ·+ ndcd − tb = An− tb

in which all ni, t are non-negative integers. Thus we have the Constant term identity:

LP (t) = const

(
1

(1− zc1) · · · (1− zcd)ztb

)
from this we can plug in the specific A,b and get one formula of Hn(t).

3.2 A multivariate generating function approach

See [5] for reference of this section. This section briefly introduces the use of Brion’s theorem,
triangulation, and Barvinok’s algorithm.

Definition 3.1. the multivariate generating function of a pointed polyhedron P :

f(P, z) =
∑

M∈P∩Zn2

zM
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where zM =
∏

1≤i,j≤n
z
mi,j

i,j . In particular,

f(tBn, z) =
∑

M∈tBn∩Zn2

zM

this clearly encodes more information than Hn(t), since by plugging zi,j = 1, we get Hn(t).

A cone is a set of non-negative linear combinations of a finite set of vectors, given a cone C, we
define the dual cone to be C∗ = {y :< y, x >≥ 0,∀x ∈ C}.

Remark 4. if P is not pointed, i.e. P contains a straight line, then MGF of P is zero. Also, it’s
proven that in Rn, dual of cones whose dimension is lower than n is not pointed, thus they have
zero MGF.

The authors derive a complicated but purely combinatorial formula for f(tBn, z), which is not
shown in detail here.

Why do we care about cones? See the following theorems.

Theorem 3 (Brion, 1988; Lawrence, 1991). Let S(P, v) be the supporting cone of P at v.

f(P, z) =
∑

v∈V (P )

f(S(P, v), z)

Algorithm 1. Dual Barvinok algorithm
Input: a rational full-dimensional cone C.
Output: the MGF of C.

1. Find the dual D of C.

2. Triangulate D into simplicial cones, discarding lower-dimensional cones.

3. Apply Barvinok’s signed decomposition to the simplicial cones until all are unimodular cones,
discarding lower-dimensional cones.

4. Take the dual back and get a decomposition of C.

5. Summing over the MGFs of all these unimodular cones to get f(C, z).

This algorithm using dual and then pulling back is faster than the original algorithm in magni-
tude, mainly because we can discard all lower dimensional cones according to the remark.

4 Birkhoff-von Neumann decomposition

The main reference of this section is [6] and Wikipedia.
Given an n×n semi-magic square A ∈ B1, recall that A can be decomposed as A = α1P1+ · · ·+

αkPk, αi ∈ (0, 1)and
k∑

i=0
αi = 1, Pi’s are permutation matrices, this is called a BvN decomposition.

We’ll partially answer the following questions:

• is BvN unique?
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• given A, can we determine what’s the minimum k?

• the computational complexity of the minimum-decision problem.

BvN is not unique in general, we illustrate that uniqueness fails even for a small matrix:

Example.0.2 0.3 0.5
0.4 0.4 0.2
0.4 0.3 0.3


= 0.2

1 0 0
0 1 0
0 0 1

+ 0.2

0 0 1
0 1 0
1 0 0

+ 0.3

0 0 1
1 0 0
0 1 0

+ 0.1

0 1 0
1 0 0
0 0 1

+ 0.2

0 1 0
0 0 1
1 0 0


= 0.2

1 0 0
0 0 1
0 1 0

+ 0.4

0 0 1
0 1 0
1 0 0

+ 0.3

0 1 0
1 0 0
0 0 1

+ 0.1

0 0 1
1 0 0
0 1 0


Definition 4.1. A few concepts from computational complexity theory.

• a decision problem takes in any valid input and outputs "yes" or "no".

• P is a set of problems that can be solved by a deterministic Turing machine in Polynomial-
time.

• NP is a set of decision problems that can be solved by a Non-deterministic Turing Machine
in Polynomial-time. A problem is in NP if you can quickly (in polynomial time) test whether
a solution is correct (without worrying about how hard it might be to find the solution).

• A problem L is NP -complete if: L ∈ NP and every problem in NP is reducible to L in
polynomial time.

Remark 5. the famous P = NP basically says that if any solution to a problem can be checked
within polynomial time, then a solution can be found in polynomial time. Many computer scientists
believe that P ̸= NP .

Theorem 4 (1 in [6]). The problem of deciding whether there is a BvN of a given A with k
permutation matrices is NP-complete.

The proof relies on one of the most important ideas in complexity theory defined below.

Definition 4.2. a reduction is an algorithm for transforming one problem into another problem.
A sufficiently efficient reduction from one problem to another may be used to show that the second
problem is at least as difficult as the first.

Observation 3. P and NP are closed under polynomial-time reductions, namely if A ∈ NP and
A reduces to B in polynomial-time, then B ∈ NP . In other words, we preprocess A to make it B,
thus solving B is at least as hard as solving A. This is the standard way to prove one problem to be
in P or NP , namely if A ∈ NP , show that if we can solve an instance of A by solving an instance
of B, then B ∈ NP .

7



Figure 1: Classes of computational problems

The proof of the NP -completeness of BvN is just as we outlined. First, it’s clear that it’s
in NP since it’s easy to verify whether k permutation matrices sum up to A or not. Then take
a 3-partition problem and build a matrix and a number (k) out of it, show that finding a BvN
with k permutation matrices is equivalent to finding a 3-partition, and lastly, use the fact that the
3-partition is an NP problem.

The way to deal with an NP -complete problem practically is by using heuristics, a greedy
heuristic is described in [6] and happens to give us the second BvN in the example showing non-
uniqueness.

5 Computational approach for poset polytopes

See the reference for the so-called snake poset in [10] and [9]. I wrote code in SageMath that
can generate Snake object and methods that allow us to see the Ehrhart polynomials of all snake
posets of order n, you can see and download the code here.

This allows us to experiment and find patterns, for example, one observed property of snake
poset is that a pair of palindromic words give us two snake posets with the same Ehrhart polynomial,
e.g. these four words {RLLL,LRRR,LLLR,RRRL} produce the same Ehrhart polynomials. It’s
not surprising that (RLLL,LRRR) produce the same Ehrhart polynomials since the corresponding
posets are isomorphic, and a little bit of thought tells us that palindromic words give a pair of dual
snakes and thus have the same Ehrhart polynomials.

Another observed phenomenon concerning the roots of the Ehrhart polynomial of snake posets
is described in the following section in detail.
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6 Conjectures and Possible approaches

Below we list some conjectures and open problems and propose several possible approaches.
Conjectures:

The first two conjectures are based on the experimental data of the roots distribution of H9(t)
from [2], see figure 2.

Figure 2: the roots distribution of H9(t)
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• the norm of the roots of Hn(t) is bounded by O(
√
n), better than the general bound O(n2).

• all roots of Hn(t) have negative real parts and thus Hn(t) exhibits Ehrhart positivity.

• Stanley gives a conjectured asymptotic behavior of coefficients of Hn(t) =
(n−1)2∑
i=0

b(n, i)t(n−1)2−i

in [8], the exercise 4.54, as follows:
b(n, k)

b(n, 0)
∼ n3k

2kk!

as n → ∞.

Also based on experiments using snake generation, we have the following observations/speculations
for any snake word with length n (the initial one is not counted), we denote its Ehrhart polynomial
ESn(t), n ≥ 0:

• ESn(t) shows Ehrhart positivity.

• roots of ESn(t) distribute symmetrically with respect to the line x = −n−4
2 . Moreover, there

should be reciprocity.

• if the word is "RR · · ·R" or "LL · · ·L", then the roots are (−n − 3, 1), (−n − 2, 2), (−n −
1, 2), · · · (−2, 2), (−1, 1), the first entry in the tuple is a root and the second is its multiplicity.
In particular, all roots of the straight snake are real. Maybe one can solve this by known
results in flow polytopes.

And some approaches or directions to explore:

• in [5], the authors use multivariate generating function of lattice points (MGF) to derive the
Ehrhart polynomial of the Birkhoff polytope. The algorithm to get the MGF relies on Brion’s
theorem, Brion’s polarization trick, and Barvinok’s algorithm. It’s possible to apply the same
algorithm to O(P ) which requires us to study its supporting cones and dual cones. Using
Brion’s formula and Theorem 3.5 in [3] is a similar promising way.

• the approach in [4] only uses the non-negativity of h*-vector, it’s proven that the h*-vector
of the Birkhoff polytope is unimodal and may be used to improve the bound using the same
idea in [4]. Can we use a different basis? such as consider

∑
n≥1

LP (t)
n! xn.

• finding correspondence between posets and graphs, rephrasing some problems in graph theory
language, borrowing techniques, and known results from graph theory. E.g. Stanley’s obser-
vation that "the order polynomial of a finite poset P depends only on the comparability graph"
relies on rephrasing C(P ) as an object built purely from the graph of P .

The following part also comes from the talk given by Anastasia Chavez at UC Berkeley on May 1st.

• how do poset operations affect O(P ), V (L) and their Ehrhart polynomials? E.g.which op-
eration on a poset corresponds to adding and which corresponds to multiplying, what does
ordinal sum correspond to, etc.
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• Once we have results on the first question, can we decompose a poset in some way to compute
its Ehrhart polynomial and many other attributes?

This seems to be a natural step towards generality given how decomposition is ubiquitous in
math: decomposing an event E using conditional probability to compute P (E), decomposing a
topological space to simple parts to compute the fundamental group of it using Van Kampen
theorem, etc. Triangulation is also one kind of decomposition but it seems to be easier to
decompose at the poset level.

Another piece of evidence supporting this is that all faces of O(P ) are given by some partitions
of P , thus this could be parallel to computing the Ehrhart polynomial of a polytope via its
facets/faces.
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