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0.1 Introduction

0.1 Introduction

Stochastic processes are mathematical models used to describe systems that evolve over time with inherent
randomness. They play a crucial role in various fields such as finance, physics, biology, and engineering.
This note aims to provide a concise overview of three fundamental types of stochastic processes: Martingales,
Markov processes, and Brownian motion. These processes form the backbone of many theoretical and applied
probability studies.

Martingales

A Martingale is a model of a fair game in probability theory. It is a sequence of random variables (discrete
or continuous) that represents a process where the future expectation, given the past and present, is equal to the
present value. Formally, a discrete-time Martingale {Xn}n≥0 with respect to a filtration {Fn}n≥0 satisfies:

E[Xn+1 | Fn] = Xn for all n ≥ 0.

Martingales are widely used in financial mathematics, particularly in the modeling of asset prices and in the
theory of optimal stopping.

Markov Processes

Markov processes are memoryless processes where the future state depends only on the present state and
not on the sequence of events that preceded it. This property is known as the Markov property. Markov
processes can be discrete or continuous in time:

Discrete-Time Markov Chains: A sequence of random variables {Xn}n≥0 is a Markov chain if:

P(Xn+1 = x | X0, X1, . . . , Xn) = P(Xn+1 = x | Xn).

Applications include queuing theory, genetics, and board games like Monopoly.
Continuous-Time Markov Processes: Here, the process {X(t)}t≥0 satisfies ∀s ≤ t:

E[Xt | σ(Xu)u≤s] = E[Xt | σ(Xs)]

Examples include the Poisson process and birth-death processes.

Brownian Motion

Brownian motion, also known as Wiener process, is a continuous-time stochastic process with continuous
paths that exhibit several key properties: it starts at zero, has independent increments, and exhibits stationary
increments that are normally distributed. Formally, {B(t)}t≥0 is a Brownian motion if:

1. B(0) = 0,
2. B(t)−B(s) ∼ N (0, t− s) for 0 ≤ s < t,
3. B(t) has independent increments,
4. B(t) has continuous paths almost surely.

Brownian motion is a fundamental model in finance for stock price dynamics (geometric Brownian motion)
and in physics for particle diffusion.
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Chapter 2 Discrete Time Markov Process



Chapter 3 Brownian Motion

3.1 Basics and Existence

The upshot: Brownian paths are Holder continuous. With probability one, Brownian paths are not Lipschitz
continuous (and hence not differentiable) at any point.

3.2 Strong Markov Property

Same definition for the stopping time as in martingales. The related σ-field is defined the same as well.
We always denote BM by Bt and stopping time by T or S unless otherwise specified.
Example 3.1First hitting time

Ta = inf{t ≥ 0 : Bt = a}

is a stopping time, where a is non-negative
but:

Example 3.2
Ta = sup{t ≥ 0 : Bt = a}

is NOT a stopping time, the intuitive explanation is that it makes use of info after time t by requiring the motion
to not hit a after time t.

What’s the relation between FT and BM?

Proposition 3.1

♠
Bs1{s≤t} ∈ FT

A more important construction would be the following. Again, we’ve seen this type of generalization
t → T .

Proposition 3.2

♠BT is FT -measurable, it is defined to be 0 on {T = ∞}.

Proof Classic approximation:

BT = lim
n→∞

∞∑
i=−1

1{ i
2n

≤T< i+1
2n

}B i
2n

.
Remark We can have a sequence of stopping times {Tn} decreasing monotonously to T , with a similar
approximation as above. We’ll use this in the proof of SMP and other occasions along with typical theory-
building tools such as DCT and MCT.

Now we are ready to state SMP.

Theorem 3.1 (Strong Markov Property)
Let T be a stopping time, assume P (T < +∞) > 0, ∀t ≥ 0:

B
(T )
t = 1{T<+∞}(BT+t −BT )



3.2 Strong Markov Property

♡

then {B(T )
t |t ≥ 0} is a BM independent of FT (under P(·|T < ∞)). Furthermore,

E[f(BT+t)1{T<+∞}|FT ] = E[f(x+Bt)]|x=BT
· 1{T<+∞}

when T is essentially finite:

E[f(BT+t)|FT ] = E[f(x+Bt)]|x=BT

Proof For the first part, it suffices to prove that the finite-dimensional distribution of {B(T )
t |t ≥ 0} is the same

as the expected BM, so it boils down to computing an expectation. Do that using Tn → T from the last remark.
Then use monotone class theorem and the expectation identity above to prove that:

E[F (BT , B
(T )
t )1{T<+∞}] = E[1{T<+∞}E[F (x,Bt)]|x=BT

]

which makes SMP obvious.
A lot of theorems involving stopping times are proven by discretizing T first, then taking the limit (usually

of the expectations). Equivalently, breaking up the sample space into a countable disjoint union, where Tn is
constant on each piece.

Another formulation of the weaker Markov property given in Durrett is:

Theorem 3.2

♡

If s ≥ 0 and Y is bounded and C-measurable, then for all x ∈ Rd,

Ex(Y ◦ θs|Fs+) = EBs [Y ]

you have to go to Durrett to demystify the notations.

Theorem 3.3 (Reflection Principle)
♡

Next, we study St = sup0≤s≤tBs. It has a surprisingly neat law.

Proposition 3.3

♠

∀a ≥ 0, b ∈ (−∞, a],
P (St ≥ a,Bt ≤ b) = P (Bt ≥ 2a− b)

Moreover, the law of St is the same as |Bt|.

Proof Draw the path and use reflection principle.

Corollary 3.1

♡
Ta and a2

B2
1

have the same law/distribution, where a ̸= 0. Moreover, T0 = 0.

Proof Translate from Ta to St, to |Bt|, to
√
t|B1|, finally to tB2

1 . We end up with,

P (Ta > t) = P (
a2

B2
1

> t)

The T0 case makes use of the fact that the zero set of a BM has no isolated points, thus T0 = inf{t > 0 :

Bt = 0} = inf{t ≥ 0 : Bt = 0} = 0.
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Chapter 4 Continuous Time Martingale

4.1 Basics

We start off by defining a different kind of continuous filtration.

Definition 4.1

♣

Fs+ =
⋂
t>s

Ft

We say that Ft is right-continuous at time t ≥ 0 if Ft+ = Ft.
{Ft} is said to be complete if all negligible sets (not necessarily measurable in F) are in F0.

Of course, we can take the completion of a filtration by throwing in all the negligible sets. So the usual
condition means completeness and right-continuity.

Figure 4.1: Continuous martingale

The most frequently used continuous martingales include: Bt, B
2
t − t, exp(θBt − θ2t

2 ). The problem is, a
random continuous martingale is not always right-continuous! Surely, we seek its modifications below.

Figure 4.2: Maximal inequality for continuous martingale



4.2 Optional Stopping Time

Definition 4.2 (up-crossing number)

♣
Mf

ab(I)

Lemma 4.1

♡

f : Q → R, assume that ∀t ∈ Q:
f is bounded on Q ∩ [0, t].
Mf

ab(Q ∩ [0, t]) < ∞, for ∀a < b.
Then both the right and left limits of f exist and both can be achieved by taking limits in the rationals.

Remark We can take g(t) = f(t+) to right-continuify a function like f , serving as a pathway from discrete
martingale to continuous martingale.

So we want to control the up-crossing number. We can verify that for almost every w ∈ Ω, X(w) is a path
satisfying the conditions in the last lemma (by using 4.2 in the proof).

Theorem 4.1

♡

Assume that Ft is right-continuous and complete, let X be a supermartingale s.t. t → E[Xt] is right
continuous, then X has a right continuous modification X̄ which is a Ft-supermartingale. Modification
means that ∀t ≥ 0,P(Xt = Xt) = 1.

Remark if X is a martingale, then X is also a martingale.
Actually, the modification is continue à droite avec des limites à gauche. The upshot is quite simple: it’s

safe to assume right continuity.

4.2 Optional Stopping Time

We assume right continuity throughout the rest of this chapter. The leading question in this section is:
When does E[XT ] = E[X0] hold? We call the limit of a uniformly integrable martingale (UIM) Yt by Y∞.

Theorem 4.2 (Discrete Doob stopping time)

♡

Let Yn be a UIM, M ≤ N be stopping times, then

YM = E[YN |FM ]

Proof
E[YT ] =

∑
E[Yn|T = n] =

∑
E[E[Y∞|Fn]1T=n] =

∑
E[Y∞1T=n]

which then evaluates to
E[Y∞] = E[Y0] = E[YT ] (4.1)

Now we’re ready to verify
E[YM1A] = E[YN1A]

Then define T = M1A +N1cA, verify that T is a stopping time and then use identity 4.1.
Then the main actor in this section.
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4.2 Optional Stopping Time

Theorem 4.3 (Continuous Doob stopping time)

♡

Let Xt be a path-right-continuous UIM, S ≤ T be stopping times, then

XS = E[XT |FS ];XS , XT ∈ L1

In particular,
E[X∞] = E[X0] = E[XT ]

and
XS = E[X∞|FS ]

Proof Discretize X with Yk = X k
2n

, S and T with their usual discrete counterparts that decrease to them (see
the remark of 3.2). We then use thm 4.2 on these objects, so

E[XTn1A] = E[XSn1A]

Now we want L1 convergence, which is given by a.s. convergence and the following uniform bound

supE[|XSn |] ≤ E[|X∞|] < ∞

because UIM ensures that X∞ is in L1. Finally, take the limit, proving that XSn → XS ∈ L1 and E[XT 1A] =

E[XS1A].

Corollary 4.1 (Continuous Doob stopping time without UIM condition)

♡

Xt is path-right-continuous, not UIM, but S and T are now bounded. Then

XS = E[XT |FS ]

Proof Let a be a common bound, stop Xt with time a, this new martingale is UIM and then apply 4.3.

Corollary 4.2

♡

Xt is path-right-continuous and UIM, T is a stopping time. Then

Xt∧T = E[XT |Ft]

Namely, Yt = Xt∧T is closed by XT , and UIM is preserved.

Proof
E[Xt∧T 1A] = E[Xt1A∩{t≤T}] + E[XT 1A∩{T≤t}]

E[XT 1A] = E[XT 1A∩{t≤T}] + E[XT 1A∩{T≤t}]

it suffices to show
E[Xt1A∩{t≤T}] = E[XT 1A∩{t≤T}] (4.2)

notice that A ∩ {t ≤ T} ∈ Ft ∩ FT = Ft∧T and by thm 4.3, we have

Xt∧T = E[XT |Ft∧T ]

which proves 4.2.
We have an arsenal now, so let’s shoot some birds.

Example 4.1 Let Bt be a BM starting from 0, set a < 0 < b, Ta and Tb be first hitting time resp. Lastly, let
T = Ta ∧ Tb. We’re interested in:

P(Ta < Tb)

E[T ],E[Ta],E[Tb]

8



4.2 Optional Stopping Time

Bt∧T is bounded, thus by DCT

E[BT ] = E[B0] = 0 = aP(Ta < Tb) + bP(Ta > Tb)

we can obtain P(Ta < Tb) along with

P(Ta < Tb) + P(Ta > Tb) = 1

Same thing for the second part, but use B2
t − t this time and stop it with T .

E[T ] = lim
t→∞

E[B2
t∧T ] = E[B2

T ] = −ab

Maybe a bit surprisingly, E[Ta] = ∞, proven by taking b → ∞ in E[T ].
We finish this section a stopping time theorem for supermartingales.

Theorem 4.4

♡

Let Xt be a nonnegative supermartingale, S ≤ T , then

XS ≥ E[XT |FS ];XS , XT ∈ L1

Proof
supE[|Xt|] = supE[Xt] ≤ E[X0] < ∞

i.e. uniformly bounded in L1, so Xt converges X∞ ∈ L1 a.s.
Step 1: assume that S ≤ T ≤ a, then use the same old Sn and Tn, since supE[|XSn |] < ∞, we have

convergence in L1 and take the limit on the discrete version E[|XSn |] ≥ E[|XTn |], which produces

E[|XS |] ≥ E[|XT |]

Step 2: without boundedness, by Fatou’s lemma

E[|XS |] ≤ E[liminf|XS∧a|] ≤ liminfE[|XS∧a|] ≤ E[|X0|]

So XS , XT ∈ L1. With a similar T as in 4.2, we have

E[|XS∧a|1A] ≥ E[|XT∧a|1A]

which then produces
E[|XS |1A∩{S≤a}] ≥ E[|XT∧a|1A∩{S≤a}]

treat LHS with DCT and RHS with Fatou’s lemma, then it’s done.
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Chapter 5 Continuous Markov Processes

We discuss Continuous Markov Processes in this chapter.

5.1 Basics

Let (E, ϵ) be a measure space, which will be the value space, here ϵ is a σ-algebra.

Definition 5.1 (Markov process)

♣

An E-valued Markov process satisfies:
Xt ∈ Ft,∀t ≥ 0.
for any bounded measurable function f on E, s < t

E[f(Xt)|Fs] = E[f(Xt)|σ(Xs)]

One can replace the filtration in the definition with σ(Xs, s ≤ t), that’s the more usual definition.

Definition 5.2 (transition kernel)

♣

If Q is a mapping E × ϵ → [0, 1] s.t.
fix any x ∈ E, Q(x, ·) is a probability on (E, ϵ).
fix any A ∈ ϵ, Q(·, A) is a ϵ-measurable function .

then Q is a transition kernel. (from E to ϵ)

Definition 5.3 (transition semi-group)

♣

A collection of transition kernels Qt s.t.
Q0(x, ·) is the dirac measure δx.
Qt+s(x,A) =

∫
E Qt(y,A)Qs(x, dy). (CK)

(t, x) → Qt(x,A) is measurable for any fixed A.
is called a transition semi-group.

Remark how to make sense of (CK)? Define a bounded linear op Qt on Bb(E):

Qt(f)(x) =

∫
E
f(y)Qt(x, ·)

then (CK) essentially says: Qs+tf = Qt(Qsf), which is also where the name semi-group comes from.
Now we’re interested in processes that have these transition semi-groups.

Definition 5.4 (Markov process with transition semi-group)

♣

the additional condition is ∀f ∈ Bb(E)

E[f(Xs+t)|Ft] = Qs(f)(Xt)

One should verify that this condition implies the second point in the original definition. Moreover, for any
time-homogeneous Markov process X , we can construct Qt(x,A) = E[1A(Xs+t)|Xs = x] (need to show it’s
independent in s), then X is a Markov process with transition semi-group.

Next, we compute the finite dimensional distribution of Xt. 0 ≤ t0 < t1 < · · · < tp, consider



5.1 Basics

(Xt0 , · · · , Xtp) and suppose the law of X0 is γ, then we claim

P(Xt0 ∈ A0, · · · , Xtp ∈ Ap) =

∫
γ(dx0)

∫
A0

Qt0(x0, dx1) · · ·
∫
Ap

Qtp−tp−1(xp, dxp−1) (5.1)

read this chain of integrals from right to left. Note that by definition Qt(X0, A) = Qt1A(X), so Qt(X0, A) =

E[1A(Xt)|σ(X0)], which implies the p = 0 case, then do induction to prove 5.1.
Remark Suppose Qt is a transition semi-group, then 5.1 is a sufficient and necessary condition for Xt to be a
Markov process with Qt.

Example 5.1 Let
Qt(x, dy) =

1√
2πt

e−
|x−y|2

2t dy

be a Gaussian measure with mean x and standard deviation t. Then B.M. is a R-valued Markov process with
Qt, this can be proven by checking its finite dimensional distribution and the last remark.

We can consider the converse.
Aim: given a transition semi-group, find a probability triplet and an E-valued sto process Xt s.t. Xt is a

Markov process with Qt.
Construction: define

Ω = {f |f : R+ → E}

let Xt be the coordinate process Xt(w) = w(t), with Ft = σ(Xs, s ≤ t). Given some discrete time
points {t0, · · · , tp} and a distribution γ on (E, ϵ), let µI

γ(A0 × · · · × Ap) be the RHS of 5.1, where µI
γ is

a measure on (EI , ϵ). We then verify the consistency condition on µI
γ , and get a probability measure on

(ER+
,F∞) = (Ω,F∞).

If X is a fixed x ∈ E, denote Xt = Xx
t . Recall that

Qtf(x) =

∫
E
f(y)Qt(x, dy)

The transition kernels are related to Xt via finite distribution 5.1. Since the law of Xx
t equals Qt(x, ·), one can

check
Qtf(x) = E[f(Xx

t )]

Then we switch to discuss some related quantities from semi-group/functional analysis theory.

Definition 5.5 (Resolvant)

♣

Let λ > 0, define a linear operator Rλ : Bb(E) → Bb(E) with

Rλf(x) =

∫ ∞

0
e−λtQtf(x)dx

A few simple facts on the resolvant:
Rλ is bounded, ||Rλ|| ≤ 1

λ .
if 0 ≤ f ≤ 1, 0 ≤ λRλ ≤ 1.
If λ, µ > 0, we have this identity Rλf −Rµf + (λ− µ)RλRµf = 0.

The following lemma makes use of resolvant and connect continuous Markov process (M.P.) with martingales,
which will later be used to understand the paths of a M.P..

Lemma 5.1

♡Let Xt be a M.P. with Qt, h ∈ Bb(E), h ≥ 0, λ > 0, then Yt = e−λtRλh(Xt) is a supermartingale.
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5.2 Feller’s semi-group and continuous paths

Proof

E[Ys+t|Fs] = e−(s+t)λE[Rλh(Xt+s)|Fs]

= e−(s+t)λQtRλh(Xs)

= e−(s+t)λQt

∫ ∞

0
e−λsQsh(x)ds

= e−(s+t)λ

∫ ∞

0
e−λsQs+th(x)ds

= e−(s+t)λ

∫ ∞

t
e−λν+λtQνh(x)ν

≤ e−(s+t)λ

∫ ∞

0
e−λν+λtQνh(x)ν

= e−(s+t)λeλtRλh(x)

= e−sλRλh(x)

5.2 Feller’s semi-group and continuous paths

We’d love for Rλh(x) to continuous, so we can pass around continuity later. This motivates the following
definition.

Definition 5.6 (Feller’s semi-group)

♣

Let E be a locally compact metric space, let f ∈ C0(E), i.e. f vanishes at infinity. We say that Qt is a
Feller semi-group if

∀f ∈ C0(E), we have Qtf ∈ C0(E),∀t ≥ 0.
∀f ∈ C0(E), ||Qtf − f || → 0 as t → 0.

Example 5.2 the transition semi-group of a B.M. is a Feller semi-group. Again, let

Qt(x, dy) =
1√
2πt

e−
|x−y|2

2t dy

then Qtf is a convolution
Qtf(x) =

∫
1√
2πt

e−
|y|2
2t f(x− y)dy

since 1√
2πt

e−
|y|2
2t is concentrated around zero, the convolution can be decomposed into deux parts as per usual.

To see why the second point holds, notice that the measure 1√
2πt

e−
|x−y|2

2t dy → δx as t → ∞. More concretely,

Qtf(x)− f(x) =

∫
1√
2πt

e−
|y|2
2t (f(x− y)− f(x))dy

since Qtf ∈ C0(E), supt sup|x|>R0
|Qtf(x)| ≤ ϵ, for sone R0. It suffices to prove

lim
t→0

sup
|x|≤R0

|Qtf(x)− f(x)| = 0

12



5.3 The regularity of sample paths

then it’s basic

|Qtf(x)− f(x)| = |
∫

1√
2πt

e−
|y|2
2t (f(x− y)− f(x))dy|

= |
∫
[−δ,δ]

1√
2πt

e−
|y|2
2t (f(x− y)− f(x))dy +

∫
|y|≥δ

1√
2πt

e−
|y|2
2t (f(x− y)− f(x))dy|

≤ ϵ+ 2||f ||
∫
R

1√
2πt

e−
|y|2
2t dy = ϵ+ Ce−

δ2

4t

which tends to zero.
Recall that Qt is a compression operator so the map t → Qtf given f ∈ C0(E) is uniformly continuous.

Especially
∫ T
0 e−λtQtf(x)dx = PT f ∈ C0(E),PT f → Rλf in sup norm, thus by completeness,Rλf ∈ C0(E),

Rλ : C0(E) → C0(E).
So far, we haven’t established the continuity of Rλ, but at least it’s mapping spaces correctly.

Proposition 5.1

♠

Let D = {Rλf : f ∈ C0(E)}, then
D is independent of λ,
D is dense.

Proof use this identity Rλf − Rµf + (λ − µ)RλRµf = 0 for the first point, and ||Qtf − f || → 0 for the
second point.

I don’t know why but we gotta introduce a different thingy here.

Definition 5.7 (generator)

♣

D(L) = {f ∈ C0(E) : lim
t→0

Qtf − f

t
exists in C0(E)}

and Lf = lim
t→0

Qtf−f
t defined on D(L).

It’s easy to see that Qt maps D(L) to itself, and LQtf = QtLf , namely dQtf
dt = Qt(Lf).

Proposition 5.2

♠
Qtf − f =

∫ t

0
Qs(Lf)ds

Proof dQtf
dt = Qt(Lf).

Proposition 5.3

♠

Rλf ∈ D(L), and D(L) is dense in C0.
Rλ(λ−L)f = f and (λ−L)Rλf = f . Notice they are defined on different subspace, so it doesn’t
mean Rλ and λ− L are commutative, but we do denote Rλ = (λ− L)−1.

Proof omitted.
Let’s take another look at our running example.

Example 5.3 (generator of a B.M.) The transition semi-group of a B.M. is a Feller semi-group. Specifically,

Qt(x, dy) =
1√
2πt

e−
|x−y|2

2t dy

The generator is given by Lf = 1
2f

′′ .

13



5.3 The regularity of sample paths

5.3 The regularity of sample paths

We assume that E is a separable LCH metric space. (locally compact, Hausdorff, and has a countable
dense subset) Thinking of E as R will be enough. (I’m not sure if we need the space to be a metric space) The
main theorem of the section is the following:

Theorem 5.1

♡

Let Xt be a Markov process with Feller semi-group Qt w.r.t filtration Ft, let

F̃t = σ(Ft+ ∪N )

where N is the set of negligible sets, and F̃∞ = F∞. Then Xt has a cádlág modification w.r.t F̃t.

In other words, any Markov process with a Feller semi-group has a cádlág modification. We call a cádlág
Markov process Feller process if the transition semi-group is Feller.
Proof Idea: recall lemma 5.1, as Xt → ∞, t → t0, we have e−λtRλh(Xt) → 0, which is kind of bad since
their continuity don’t match well, so instead we work with the one-point compacification of E, denoted Ê.

How to pick h in e−λtRλh(Xt)? Let the set of h be a separating set for Ê: ∀x ̸= y ∈ Ê,∃hn, hn(x) ̸=
hn(y), hn ≥ 0. Then we claim that H = {Rkh} is also a separating set of Ê: this is due to kRkh → h, so now
we take ∀h ∈ H.

Let D be a countable dense subset of R+, by lemma 4.1, we have ∃Nh ∈ N , s.t. ∀w ∈ N c
n, both the right

limit of e−λth(Xt(w)) in D and the left limit exist, for all t ∈ R+.
Now, let

N =
⋃
h∈H

Nh ∈ N

then ∀w ∈ N c, ∀t ∈ R+, lims→t,s∈D Xs(w) exists from both the left and the right. To prove this, suppose the
contrary, limsn→t,sn∈D Xs(w) = x ̸= y = lims′n→t,s′n∈D Xs(w), then ∃h ∈ H, h(x) ̸= h(y), further

lim
sn→t,sn∈D

e−λsnh(Xs(w)) = e−λth(x)

lim
s′n→t,s′n∈D

e−λs′nh(Xs(w)) = e−λth(y)

BUT limsn→t,sn∈D e−λsnh(Xs(w)) = lims′n→t,s′n∈D e−λs′nh(Xs(w)) by the definition of Nh, contradiction,
proving the claim.

Define X̃t(w) = lim
s→t,s≥t,s∈D

Xs(w) when w ∈ N c and X̃t(w) = x0 ∈ E, a random point. This new

process is cadlag by construction, the problem is that it takes value in Ê, not E.
But first, we verify that X̃t is indeed a modification, i.e.

P(X̃t = Xt) = 1

. Take ∀f, g ∈ C0(Ê) and compute

E[f(Xt)g(X̃t)] = lim
tn≥t

E[f(Xt)g(Xtn)]

= lim
tn≥t

E[f(Xt)E[g(Xtn)|Ftn ]]

= lim
tn≥t

E[f(Xt)Qtn−tg(Xt)]

= E[f(Xt)Q0g(Xt)] = E[f(Xt)g(Xt)] (Feller)

14



5.4 Strong Markov Property

So (Xt, X̃t) and (Xt, Xt) have the same distribution, which then allows us to take the diagonal function:

E[1Xt=X̃t
] = E[1Xt=Xt ]

so X̃t = Xt, a.s.
Next, X̃t is Markov and has the same transition semi-group w.r.t F̃t. ∀A ∈ F̃s,

E[1Af(X̃s+t)] = E[1AQtf(X̃s)]

it suffices to assume that A ∈ Fs+, f ∈ C0(E) and show

E[1Af(Xs+t)] = E[1AQtf(Xs)] (*)

notice that A ∈ Fsn , sn ≥ s, sn → s,

E[1Af(Xs+t)] = E[1AE[f(Xs+t)|Fsn ]] = E[1AQs+t−snf(Xsn)]

take the limit on both sides and we get the following by Feller property:

E[1Af(Xs+t)] = limE[1AQs+t−snf(Xsn)] = E[1AQtf(X̃s)] = E[1AQtf(Xs)]

so (*) is proven.
Finally, it remains to show that P(X̃t ∈ E) = 1, then all previous results can be transferred to E, thus

concluding the proof. Pick any g > 0, g ∈ C0(E), h = Rg, Yt = e−λth(X̃t), let Tn be the first hitting time of
{Yt < 1

n} which converges to the hitting time of 0, called T , and YT = 0.
We then apply Doob’s optional stopping time for non-negative martingales:

E[YT+q1T<∞] ≤ E[YTn1Tn<∞]

≤ 1

n
→ 0

→ E[YT+q1T<∞] = 0 → X̃T+q = ∆,∀q ∈ Q

→ at any given time t after T, X̃t = ∆, the added point.

→ P(T < ∞)

= limE[1T<n]

= limE[1T<n∩X̃n=∆]

≤ limP(X̃n = ∆) = lim 0 = 0

so T = ∞ a.s., which means that Yt doesn’t hit 0, which is equivalent to saying X̃t doesn’t hit ∆, all with
probability 1.

5.4 Strong Markov Property

How can we view a Markov process as a single random variable? Let D(E) be the set of all cádlág paths
R+ → E, with a σ-field generated by all coordinate maps, called D. Then X : (Ω,F ) → (D(E),D) is a
random variable, also the entire Markov process. So one can assign this probability on (D(E),D):

P(w : X(w) ∈ A) = µ(A),∀A ∈ D

Actually µ = µx, where x = X0 is assumed to be a fixed point.

15



5.4 Strong Markov Property

Theorem 5.2

♡

Let Y be a cádlág Markov process with semi-group Qt, s ≥ 0,Φ : D(E) → R+, shift Y by s to get
Zt = Ys+t, Z : Ω → D(E), and Φ(Z) : Ω → R+ is a random variable, then

E[Φ(Z)|Fs] = E[Φ((Yt+s)t)|Fs] = EYs [Φ]

RHS is an integral over D(E) with dµx, x being the initial value, then take x = Ys.

Remark fixed Ys leads to the simple Markov property.
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Chapter 6 Applications
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