
Repeated Games and Folk Theorem

Zhi Wang∗

Mentor: Gabriel Ramirez Raposo
Book: Mathematical foundations of game theory[1]

May 7, 2023

1 Game models
We first introduce a game model and establish the corresponding terminology, we’ll see how

definitions and names enable us to formalize a game to a familiar and rigorous mathematical
object.

Definition 1.1 (language we need to talk about a game).

• A game is a triple (N, (Si)i∈N , (gi)i∈N ), gi : S =
∏
i∈N

Si → R is called the payoff function of

player i. We may use I and N interchangeably to denote all players.

• a strategy profile is an element s = (si) in S, s−i =
∏
j ̸=i

sj , similar define S−i =
∏
j ̸=i

Sj .

• ∆(Si) = {σ : σ is a probability distribution on Si}, the mixed extension of G is (N, (∆(Si))i∈N , (g̃i)i∈N ),
where g̃i(σ) =

∑
a∈Si

σ(a)gi(a).

1.1 Nash equilibrium

Definition 1.2. A strategy profile s is said to be a Nash equilibrium of G if:

∀ti ∈ Si, gi(s
i) ≥ gi(t

i, s−i)

i.e. unilateral deviation won’t result in more profits, thus no one has the incentive to change his
strategy.

The Nash equilibrium is a fixed point if we add in proper topology and geometry - in this case,
convexity! Thus we can use Brouwer’s fixed point theorem or Kakutani’s fixed point theorem to
prove the following theorems. Next, we establish several scenarios that admit the existence of Nash
equilibrium. The result in the finite case is satisfactory. When we say G is a finite game we mean
there are a finite number of players and each of their strategy sets is finite.
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Theorem 1 (Nash Equilibrium in Finite Games). Every finite game G has a mixed equilibrium.
A mixed equilibrium of G is a Nash equilibrium of G̃.

To prove the existence of Nash equilibria in a continuous setting, we need to assume some
topological and geometrical conditions. The game is called compact if each strategy set Si is a
compact subset of a topological space and each payoff function gi is bounded. Finally, the game
G is called continuous if each Si is a topological space and each payoff function gi is continuous
with respect to the product topology on S. We will assume that each strategy set Si is a convex
subset of a topological vector space, and correspondingly a geometric condition on gi, a real-valued
function f on a convex set X is quasi-concave if the level sets {x : f(x) ≥ α} are convex for all
reals α.

Definition 1.3. A game is quasi-concave if for all i ∈ N the map si → g(si, s−i) is quasi-concave
for all s−i in S−i and all i ∈ N .

Theorem 2. If a game G is compact, continuous and quasi-concave, then its set of Nash equilibria
is a non-empty and compact subset of

∏
i∈N

Si.

1.2 repeated games

Example (Prisoner’s dilemma). Consider the following game 1 in which the rows are strategies of
the first player and the first coordinate of a pair is the payoff of player 1.

In the mixed extension of this game, the Nash equilibrium is unique, namely (1, 1).
What if we repeat the game for finite times, will the prisoners realize that collaboration is the

better solution? No, they won’t! Repeat the game for n times and consider the average payoffs,
denote the ET the equilibrium payoffs up to round T , we can prove by induction that ET = {(1, 1)}.

Take an T + 1 stage equilibrium profile σ, assume player 1 uses C1 with probability x and B1
with y, in the first round under σ, the profit will be greater or equal to than the case in which
player 1 uses B1 in the first round, notice that the continuation strategies induced by σ form a
Nash equilibrium of the remaining game.

1

1 + T
(3xy + 4(1− x)y + (1− x)(1− y) + T ) ≥ 1

1 + T
(4y + (1− y) + T )

solving this we obtain: x = 0, similarly y = 0, and we proved that ET+1 = {(1, 1)}. takeaway:
there maybe be no room for cooperation in a finite repeated game.

C2 B2
C1 (3, 3) (4, 0)
B1 (0, 4) (1, 1)

Table 1: Prisoner’s dilemma

Definition 1.4. We define a few fundamental concepts when talking about repeated games.

• a history of length t is a vector (a1, · · · , at), ai ∈ S is the strategy profile at stage t, let Ht

be all histories of length t and H =
∪
t≥0

Ht,H0 = ∅.
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• a strategy of player i is a map σi = (σi
j)j≥1: H → ∆(Si), a profile is defined same as before.

Σi is the strategy set of i and Σ =
∏
i∈N

Σi. These are pure strategies! Even they map into

distributions.

• u = (a1, a2, · · · ) is called a path or a play.

This is how to interpret the definition: σi takes in history up to stage t and determines the
probability distribution on Si that player i should adopt at stage t + 1. A profile σ = (σi)i∈N
defines a probability distribution on H inductively, first use (σi

1)i∈N as the distribution on H1, then
extended by Kolmogorov’s theorem to H∞.

A Nash equilibrium for a repeated game means that no player can deviate on any round uni-
laterally to gain profits, but how do we define payoff here? Or more fundamentally, what are the
characteristics we are modeling when formulating different kinds of payoffs? One such thing is the
patience of the players, they can be gambling and really only care about how much they win in an
hour, or they could be in a large-scale game and are patient enough to value all stages equally.

Definition 1.5. Given a profile σ.

• (finitely repeated game) the payoff of i up to stage T , γiT (σ) = Eσ(
1
T

T∑
t=1

gi(at)). And

1
T

T∑
t=1

gi(at) is indeed a random variable on H, it can also be viewed as an r.v. on
T∪
t=0

Ht

and the measure is simply defined by induction without using Kolmogorov extension.

• (discounted game) γiT (σ) = Eσ(λ
∞∑
t=1

(1− λ)t−1gi(at)). λ is the discount rate.

σ is an uniform equilibrium if:

1. ∀ϵ > 0, σ is a ϵ-equilibrium under average payoff when played long enough.

2. ((γiT (σ))i∈N )T has a limit in RN as T → ∞.

Remark 1. the smaller λ is, the more patient the players are.

Their equilibrium sets are clearly nested.

Proposition 1. E1 ⊂ ET ⊂ E∞ and E1 ⊂ Eλ ⊂ E∞.

Next, we introduce the concepts of feasible payoffs and rationality.

Definition 1.6.

• The vector payoff function g : S → Rn, g(s) = (g1(s
1, · · · , gn(sn))), the feasible payoff set is

F = co(g(S)) = g(∆(S)), E∞ ⊂ F .

• Punishment level of player i is vi = min
x−i

max
xi

gi(xi, x−i), no matter which strategy i uses,

other players always have a way to punish i by making him gain no more than vi.

• Individually rational payoff set is IR = {u = (ui)|ui ≥ vi, ∀i ∈ N}.

Conversely, i can always gain no less than vi, so we assume that if a player is rational, his payoff
should be in IR, thus E = IR ∩ F is the largest payoff set in this setting.
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2 Folk Theorems

2.1 The Folk Theorem

Theorem 3. everything is possible if you are willing to play forever: E∞ = E.

We sketch a proof below.

Proof. We need to show that E ⊂ E∞, take x ∈ E, there is a path u to the payoff. All players
start by playing the action prescribed by u and continue to do so until someone deviates. If player
i deviates, all other players switch to the strategies that can punish i to make him gain less than
vi forever. The one-stage gain from deviation contributes 0 to the total payoff of player i in the
average payoff. The utility of a deviating player cannot be higher than his punishment level. Hence
by employing punishment, all players stay on the intended path which is easily verified in E∞.

One natural question: should we expect ET → E∞ in Hausdorff distance? No, the above
Folk theorem is clearly too ideal and is hardly ever the practical case, the prisoner’s dilemma is a
counterexample, we see clearly below that E is much larger than any ET (just a fixed point).

Recall the definition of E∞, the path σ need not be a Nash equilibrium up to any stage, namely,
the players need to be willing to lose a little for cooperation, which can lead to long-term greater
profit.

x

y

1 2 3 4

1

2

3

4

E

Individually rational and feasible set in the prisoner’s dilemma

This again shows that Nash equilibrium ̸= optimal profile, willing to lose by ϵ can lead to
cooperation if all players agree to follow the path σ, but in real games, we have to take into account
how much one trust each other.

2.2 Other Versions

There are many more versions of Folk theorems depending on what kind of repeated games you
want to study, we present them here without proving them. We use vi to denote the punishment
level.

Theorem 4. If there are two players or ∃u ∈ E, ui > vi, then Eλ → E in Hausdorff distance
between sets, as λ → 0.

The condition for ET to converge to E is stricter and is false in the prisoner’s dilemma.

Theorem 5. ∃u ∈ E1, ui > vi, then ET → E in Hausdorff distance.
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Finally, this note is only an introduction to the language of game theory, and there is much
more to explore by making our assumptions more practical and introducing more possibilities such
as imperfect information, stochastic games, and other kinds of equilibrium.
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